
NONLINEAR PROBLEMS OF CAVITATION BREAKDOWN OF LIQUIDS 

UNDER EXPLOSIVE LOADING (REVIEW) 

V. K. Kedrinskii UDC 532.593+532.529+541.126 

The breakdown of a liquid in intense rarefaction waves produced by explosive loading 
near the free surface represents a new field in the hydrodynamics of explosions. Only a 
few of the relevant concepts, such as critical tensile stress and tensile strength in liquids, 
have a long history. The first studies were static in nature and the first results in this 
field were published in the middle of the last century by Berthelot [i]. The first dynamical 
study using an underwater explosion near a free surface was evidently that of Hilliar in 1919 
[I]. In a recent study by Wilson et el. [2] the strength of a liquid was estimated by mea- 
suring the velocity of the spray dome produced by shallow underwater explosions. The critical 
tensile stress p, was determined by the amplitude of the wave p at which the velocity of the 
free surface v = (2p - p,)/pU became equal to zero. The resulting value of p, was 0.85 MPa 
for standing tapwater and 1.5 MPa for deionized and vacuum-evaporated water. Carlson and 
Henry [3] used high-speed loading of a thin liquid layer by a pulse electron beam and ob- 
tained the value p, = 60 MPa. 

Practically all of the experiments rely on visible discontinuities in the liquid, which 
by nature are determined by strongly nonlinear cavitation developing on cavitation nuclei in 
the presence of intense rarefaction waves. These discontinuities (sheets) were observed by the 
author in experiments using underwater explosions of line charges (two-dimensional problem) 
near the free surface [4]. It was noted that sheet discontinuities form only in a narrow 
layer near the free surface, in spite of the fact that strong cavitation extends over a volume 
an order of magnitude larger. The sheets themselves are strongly cavitating layers and their 
structure recalls foam, which then rapidly breaks up into separate drops, forming the spray 
dome [5]. Because of the strong cavitation the two-phase state of real liquids must be taken 
in mathematical models for the wave field [6]. 

The breakdown of a liquid under explosive loading comprises a series of essentially non- 
linear phenomena. It can be defined as the inversion of the two-phase state of the medium, 
i.e., the transformation of the cavitating liquid into a gas-droplet system. The inversion 
comprises the following stages: 

a) the formation and dynamics of bubble clusters; 

b) unbounded multiplication of cavitation nuclei leading to a foamy structure; 

c) breakup of the foamy structure into cavitating fragments; 

d) transition into the droplet state and its evolution. 

Each of these stages is self-contained and yet forms an integral part of the process. 
Therefore the mechanisms corresponding to each stage are of great interest. 

In the present review paper we consider the basic results for each stage, including the 
experimental data, the experimental methods, and the physical and mathematial models of the 
processes. 

i. Bubble Cavitation. In physical acoustics this stage has been studied the most. The 
main problems are to determine the state of a real liquid from the point of view of its 
homogeneity and the mechanism of bubble cluster formation. The construction of a mathematical 
model to describe cavitating liquids is obviously important since it could then be used to 
analyze the structure and the parameters of the wave field and the limiting values of the 
tensile stress allowed by a cavitating liquid. 
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In contrast to the process of fracture in solids, in the case of pulse loading in liquids 
there is no stage in which fracture centers develop. The macroscopic structure of the liquid 
is such that even when the liquid is carefully purified by distillation and deionization 
there are always microinhomogeneities present which can act as cavitation nuclei. They can 
be microbubbles of free gas, solid particles, or their conglomerates. The determination of 
the nature of these!microinhomogeneities, their density, and their size spectrum, is one of 
the basic problems ih the study of the state of a real liquid. 

The most reliable results in this field are obtained by a combination of light scatter- 
ing and shock tubes. A typical experimental setup is shown schematically in Fig. i. It 
represents an electromagnetic source of a pulse magnetic field generated in a narrow gap 
between a membrane and a plane helical coil on which a high-voltage capacitor is discharged 
[7]. The parameters of the discharging circuit are chosen to ensure that the discharge is 
aperiodic and to thereby eliminate pressure oscillations in the shock wave created in the 
liquid by the motion of themembrane driven by the magnetic field. This method can generate 
shock waves with amplitudes up to i0 MPa and durations of the positive phase of about 3 msec. 
The liquid is placed in the working (transparent) section of the shock tube. The light 
source is an He--Ne laser L whose beam LB of diameter 1.5 mm is transmitted at a depth of 3 mm 
from the free surface of the liquid. The scattered light is collected by a photomultiplier 
system PM whose position relative to the direction of the laser beam is chosen taking into 
account the specific features of the problem. The signal from the photomultiplier is fed 
into a digital-analog transducer and a computer. The capacitor pickup CG through the ampli- 
fier A measures the displacement of the free surface resulting from reflection of the shock 
wave. 

The angular distribution of the scattered intensity (the so-called scattering indica- 
trix) has characteristicswhich are a record of the sizes of the microinhomogeneities. 
Smoothed maxima indicate size dispersion of the nuclei. In the case of microbubbles of 
free gas the light must be specially polarized. Static experiments (unperturbed liquid) 
with distilled water and a wavelength of A = 0.63 ~m of the scattered light show that the 
radii of the nuclei are approximately 1.5 • 0.2 ~m and are nearly monodispersed [7]. We 
note that this result is associated with a certain selectivity of the detection system 
which limits its capability of determining the true distribution. The distribution and 
sizes of microparticles in distilled water were studied by the author together with V. A. 
Stepanov using the Malvern Instrument M6.10. Of the data obtained the maximum of the dis- 
tribution was considered to be relatively reliable: in fresh water it was about 4 pm and 
in standing water it was 0.85 ~m (with a magnetic mixer). The experimental results of [8] 
in standing water were fit in [9] to the simple relation Ni~V i ~ C = const, where i is the 
bubble species, N i is the number of bubbles of a given species, V i is their volume, and 
C = 10 -9 . Obviously this relation does not describe the entire distribution, which from 
physical considerations should have a maximum and asymptotically approach zero as the 
volume of bubbles approaches zero and infinity. A distribution with these properties is 

( v i / v . ) 2  ( 1 . 1  ) 
N~ = N o t , ( v i / v , ) 4  �9 
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Fig. 2 

TABLE 1 

A u t h o r  k o 

6 ~<i 6.10 -1~ 
S t r a sbe rg  (i956) 22 <<l 2- iO -1~ 

13 <<l 3. lO -1~ 

Gavrilov (1970) 50--0,5 * ~I I0-8--I0 -*~ 

Hammitt (1974) 6 ___I " 
3 -----iO0 

Besov et al. (1984) 1,5 i0~--i0 ~ (i0~--i06) <i0 -e 

�9 _ �9 , , ,  . 

R o, pm N o ,  Cm -3  

*The range of sizes of nuclei observed during the 
settling of a sample of fresh tap water over a period 
of several hours. 

This distribution involves two unknown parameters: the total number of bubbles per unit 
volume N o and the normalization parameter V,, which can be taken as the volume of a bubble 
of radius R, corresponding to the maximum of the distribution. As shown above R.~ = 0.85 ~nn. 
Then since the tail of the distribution (I.I) must fit the data of [8] for R i ~ 3 ~n, the 
total density of microinhomogeneities is then N o = 1.5"i0 s, which is consistent with the 
estimate i05-I0 ~ cm -3 [i0] obtained by measuring the tracks of diffraction spots from light 
scattered by microinhomogeneities. 

Study of the dynamics of the scattering indicatrix as the shock wave passes through 
the sample of distilled water shows that its intensity can vary above or below the background 
for two special detection angles, assuming that microparticles can deform underthe influence 
of the shock wave [7]. Experimental support of this fact is direct proof of the existence 
of microbubbles of free gas among cavitation nuclei. 

Two problems associated with the state of a real liquid are the stabilization of nuclei 
and their density N per unit volume, which directly affects the mechanism of bubble cluster 
formation in rarefaction waves. Several models have been proposed to solve the first 
problem: 

a) fluctuating vacancies: R, = (kT/o) I/2 (Frenkel, 1945); 

b) hydrophobic particles with nuclei in the interstices R, = 2o/p0 (Harvey, 1944); 

c) surface organic films (Herzfeld and Fox, 1954); 

d) ionic mechanism (Blake, 1949, and Akulichev, 1966); 

e) solid-particle nuclei (Plesset, 1969); 

f) microbubbles with heat fluxes, Stokes forces, and buoyancy forces in equilibrium: 
R, = (v2kT/p0g2) I/7 (Kedrinskii, 1985); 

g) combination structures (experimental results, Fig. 2) (Besov, Kedrinskii, and Pal'ch- 
ikov, 1991). 
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Fig. 4 

All of the above types of microinhomogeneities with their stabilization properties can 
exist in a real liquid and hence there is a wide distribution of sizes from nanometers to 
tens of microns. The second problem is to determine the number of nuclei N o in the cavita- 
tion zone and their volume concentration k0. Experimental data on these parameters are 
given in Table i. 

The first three results for the density No include only gas nuclei i (Fig. 2), the last 
result takes into account all types of microinhomogeneities (data in parentheses), including 
solid nuclei and their combinations 2 with gas nuclei, on which vapor bubbles can grow under 
tensile stress. 

The results of acoustic diagnostics of microbubbles of free gas (obtained in particular 
by Strasberg) indicate a very low density. However, high densities are observed in fully 
developed cavitation clusters. This suggests an avalanche-like population of the zone of 
strong bubble cavitation by nuclei. For example, this model was used in [ii] to explain the 
observed (by high-speed motion pictures) growth of cavitation in the focal zone of an ultra- 
sonic concentrator (f = 550 kHz). 

Several frames are shown in Fig. 3 (the interval between frames was three periods and 
the vertical size was 6 mm). We see that initially after application of the field only a 
single bubble appears in the frame. Strasberg's results appear to be supported, but after 
I0 periods cavitation bubbles form a dense cloud near the focus. One assumes that there 
was an avalanche-like multiplication of nuclei caused by the instability of the shape of 
the bubbles. Under strong compression the bubbles break up into separate fragments, which 
then act as new cavitation nuclei. Their future behavior in the ultrasonic field is then 
assumed to follow that of their "parents.', The result is a curious ultrasonic pumping of 
the liquid by nuclei. Two facts which have not been taken into account in this discussion 
are: 
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Fig. 6 

I) the velocity of the fragments must be so high that they can quickly establish a suf- 
ficiently uniform distribution in space; 

2) the generation of a dense cavitation zone in the field of a single rarefaction pulse 
(for example in the case of a shock wave produced by an underwater explosion reflecting from 
the free surface) is impossible according to the above discussion. 

A fundamentally new mechanism for the generation of cavitation zones was proposed by the 
present author in [12]. The essence of this mechanism is as follows: 

a) it is assumed that a real liquid contains a spectrum of nuclei of radii 10-7-10 -3 cm 
and constant density of 10s-10 6 cm-3; 

b) the concept of visible (detectable) size of a cavitation bubble is introduced; 
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c) the apparent multiplication of cavitation nuclei in relatively weak ultrasonic fields 
is explained by the successive saturation of the zone by bubbles attaining visible size after 
different times, which depend on their initial position in the spectrum of nuclei; 

d) for strong rarefaction the entire spectrum of nuclei can reach visible size simul- 
taneously and then the saturation density of the cavitation zone by bubbles reaches a maximum 
at once. 

The last two assertions were based on the theoretical and numerical analysis of the 
effects of initial size on the time required for a nucleus to grow to a given size [13]. 
We consider the simplest case of constant tensile stress. The dynamical behavior of a 
bubble of volume V is determined by the first integral of the Raylelgh equation 

V-U3F 2 = 6~F(V, Vo, p), ( 1.2 ) 

where F = t + W e V Z t / S V o ( V  o ,  1--" _g l - , )_p (V_Vo)__~  We(V2/3 V~/3) ?--i -- ; dimensionless variables and 

parameters were introduced as follows: V = (R/Rv)3; R v is the visible bubble radius; R 0 is 
the radius of the nucleus; V 0 = (R0/Rv) 3, p = P~/P0; P= is the pressure at infinity; We = 
2o/p0Rv; n = P0/p0c02; a dot denotes a derivative with respect to t = t'c0/R v. The function 
F on the right-hand side of (1.2) describes a family of curves dependent upon V 0 and p. A 
solution exists only for those parts of the curves where F > 0. 

Qualitative analysis shows that for different values of p three types of solution are 
possible. They are shown in Fig. 4a for R v = 0.01 cm, We = 0.0!5, 7 = 1.4, and V 0 = 0.01. 
For p = -0.01 we have F > 0 (curve i), which implies unbounded growth of the bubble. The 
asymptotic limit at infinite time is determined by the conditions that both F and its deriv- 
ative F v vanish. For the values of the parameters taken above, this corresponds to p = 
-0.0081 and V = 6 (curve 2). The third type of solution is a periodic oscillation: the 
possible values of V are between the points F = 0 (curve 3 is obtained for p = 0). We 
note that in this case the bubble is within the visible zone during part of its oscillation 
period. 

Integration of (1.2) from V 0 to 1 determined the time ~v required for the bubbles to 
reach visible size. Figure 4b shows ~v as a function of R0/Rv for p = -i and -i0 (sets of 
points 1 and 2, respectively) beginning at about i0 ~m (the visible size was assumed to be 
i00 vm). The quantity T v is practically constant for smaller sizes. When R 0 << R v the 
quantity T v is described by the simple equation 

~ ,  = 3 /Y6-qlp l .  
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For the set of points 1 we see that nuclei with i0 < R 0 < i00 ~m reach visible size gradually 
and the entire spectrum becomes visible about 12 ~sec after application of the stress. The 
calculations show that for p = -0.01 bubbles with radii smaller than 17 ~rn do not reach 
visible size. 

The data support the interpretation of a real liquid as a two-phase medium, in spite of 
the negligibly small initial gas content (volume concentrations of lO-S-lO -12 cm-3). It is 
then logical to assume that the transformation of rarefaction waves in a cavitating liquid 
is similar to the effect of propagation of shock waves in a bubbly medium and that the mathe- 
matical model of such a medium can be used to describe cavitation effects [6]. This model 
is a system of conservation laws for the average density p, the pressure p, and mass velocity 
v. The state of the medium is described by the dynamical Rayleigh equation for an individual 
bubble, and the relation between p and the volume concentration of the vapor-gas phase k: 

dpldt + p div v = 0, dvld t  + p - 'Vp  ---- 0, 

,p = ( i  - k )p , ,  k = k o ( R / R o ) " ,  

Rd2B,/dt 2 + (3/2) (dB/d t )  2 = [po(Bo/R) 3~ - p]/,p. 
(1.3) 
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Fig. I0 

Fig. ii 

This model can be used to solve a number of fundamental problems, the most important of which 
is to predict the limiting tensile stress that can be measured in the liquid. These results 
were analyzed in [6, 14] using a simplified version of (1.3), based on certain approximations. 
Since the compressibility Of the medium as a whole is determined by the compressibility of 
the vapor-gas phase, we can assume thatthe liquid component of the medium (the solvent phase) 
is incompressible. Nonlinear processes in cavitating liquids are assumed to be a consequence 
mainly of the nonlinear dynamics of the bubbles. Then the system (1.3) can be reduced to the 
form 

Ap=--,pokoa2k/Ot :, 
a2k/at ~ = (3/pOR~) k~/3 (pok-~ - p) -k (ak/at)~/6k. (1.4) 

We next introduce a new spatial variable N = ~rk I/6, where ~ = fJk~/R0 and the following two 
fundamental assumptions: 

a) the dynamics of bubbles in a cluster can be described by the equation ktt = -3kZ/3p/ 
p0R~, which can then be substituted into the right-hand side of the first equation of (1.4); 

b) [p~2r[ >> [P~rr[ and k >> [rkr/6 [, which implies that the pressure in the cavitating 

liquid obeys an equation of the Helmoltz type 

Ap~p, ( 1 . 5 )  

and  t h e r e f o r e  an a n a l y t i c a l  r e l a t i o n  can  be found  be tween  t h e  p r e s s u r e  and t h e  c o n c e n t r a t i o n  
o f  t h e  v a p o r - g a s  p h a s e  in  t h e  c a v i t a t i n g  l i q u i d .  S i m u l t a n e o u s  s o l u t i o n  o f  ( 1 . 5 )  and t h e  
R a y l e i g h  e q u a t i o n  in  ( 1 . 3 )  d e t e r m i n e s  t h e  p a r a m e t e r s  o f  t h e  r a r e f a c t i o n  wave and t h e  dynamics  
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Fig. 12 

of the cavitation process [4]. By comparing with the numerical solutions of the complete 
equations and with experimental data it can be shown that this approximation gives reliable 
results for the main characteristics of wave process in cavitating liquids. 

It is known that the stress at the front of a rarefaction wave is continuous and 
reaches its maximum value after a finite time At*, which can be defined as the slope of the 
front. Solution of the axisymmetric problem for the growth of the cavitation zone in an 
underwater explosion near the free surface shows that this fact is essential in determining 
the limiting stress [6]. After the time At* the volume concentration k of the vapor-gas 
phase increases by several orders of magnitude, significantly changing the state of the 
medium and the applied stress field. As a result, the maximum negative pressure amplitude 
in a cavitating liquid can be up to an order of magnitude lower [6] than that of an ideal 
one-phase model. 

Figure 5 shows the numerical and experimental data (points) of the rarefaction wave 
profile at a depth of 4.5 cm near the symmetry axis for an explosion of a 1.2 g charge at a 
depth of 18.5 cm. Curve 0 represents the one-phase model, curves 1-3 were obtained for R 0 = 
5 ~n, k 0 = 10 -II, and At* = 0, i, and 5 psec, respectively, and curve 4 corresponds to 
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ko = i0 -z~ At* = 1 psec. Curves 2 and 4 are distinguished by the volume concentration. 
Note that the experimental points lie near curve 3 and support the possibility of calculating 
the real parameters of the wave field. 

The tensile stress relaxation time in a cavitating liquid can be estimated both numeri- 
cally and experimentally for the example of cavitation produced at the bottom of a vertical 
tube containing the liquid when the tube is suddenly accelerated downward [14]. As shown by 
the experimental data (Fig. 6) obtained by the author together with I. Hansson and K. Morch 
at the Danish Technical University, a zone of strong bubble cavitation develops at the bottom 
of the tube. For sufficiently high acceleration amplitude this cavitation zone can fuse into 
a continuous vapor-gas layer which will determine the conditions for the detachment of the 
liquid column from the bottom. The experiment was modeled numerically using the one-dimen- 
sional form of (1.5) and the closing equations of (1.3) for the following boundary condition 
at the bottom of the tube (z = 0): 8p/Sz = -p0a(t). Here a(t) is the acceleration of the 
tube and z is the vertical coordinate. It was assumed for simplicity that the liquid occupies 
the entire half space z ~ 0. The solution of (1.5) gives an analytical expression for p(k): 

p = --pola (t) ] exp (--=kli6z) l=k li6. ( 1.6 ) 

We substitute (i.6) into the Rayleigh equation, which for the dimensionless radius y = R/R0 
takes the following form at z = 0: 

yy § (3/2) ~2 = (po/PoB~) [y-3v + Po l a (t)I/ayl/ipo]. ( 1 . 7 )  

Neglecting the gas pressure inside the bubbles and considering only their expansion phase, 
which is justified for the purpose of estimating the relaxation time, the above equation 
can be solved analytically, given the explicit dependence a(t). 

We consider the transformation of a pulse discharge for the model of an underwater 
shock wave, putting a(t) = amaxeXp(-t/~), which corresponds to a jump at the front of the 
rarefaction wave. The value of ama x corresponding to Pmax = -30 MPa calculated from (1.6) 
is 5"107 cm/sec 2. The solution of (1.7) has the form 

y512 _-- I - t -  5 ~amax [ t  - -  �9 (i - -  e - t / ~ ) ] .  
2 aR~ (1.8) 
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Fig. 14 

Calculations using (1.6) and (1.8) for k 0 = 10 -1~ , R 0 = i ~m, and z = i0 Dsec show that at 
time t = T the amplitude of the discharge wave in a cavitating liquid has decreased by a 
factor of 20e (in a one-phase medium the decrease is only by a factor of e). For t << x the 
time dependence of the stress behind the rarefaction wave front is quite accurately deter- 

mined by the equation 

P ~ - -  P~ (a~axR~/3k~ t-~/~" ( 1 . 9 )  

This model can also be used to estimate the effect of the slope of the front on the limiting 
tensile stress Pmax in a cavitating liquid. It is sufficient to consider only a part of 
the front and to approximate a(t) as a linear function of time: a(t) = amaxt/T, where I/T 
determines the slope of the front. At t = z the wave amplitude reaches a maximum and is 
determined by (1.9) with t replaced by T. Assuming k 0 = 10 -11 and R 0 = 0.5 llm [6], and �9 = i 
~sec, ama x = 3.28-107 , we obtain Pmax = -3 MPa, instead of the expected value of 30 MPa. The 
calculations of [6] give a quantity of the same order, which shows the reliability of (1.9) 
in estimating both the relaxation time and the limiting tensile stress. 

The complete system of equations (1.3), without any assumptions (such as on the state of 
the gas) and with heat transfer taken into account in the calculation of the pressure inside 
a bubble, was applied to the problem of a shock rarefaction tube. This is the analog of the 
classical shock tube where the liquid is contained in the high-pressure chamber and also the 
breakup of an arbitrary discontinuity with essentially unsteady and nonlinear conditions. 
Instead of assuming adiabatic conditions in the Rayleigh equation of (1.3), the gas pressure pg 
was calculated from the equation 

dpgldt = 3 (~ - -  1 ) q l 4 n R  3 - -  3~p~(c~/dt)/B, 

where the rate of heat transfer and the temperature are given by 

q - ~ R 2 ~  N u  (To  - -  T ) / ~ ,  r - -  p , / ( 7  - - l )  c~O~ = r o ( R / R o )  ~ p , / p ~  

Nu ---- YPe for  Pe  >~100,  Nu ----- i 0  for  Pe < 100, 

Pe - -  i 2 ( . f  - -  i ) T o R I S I / ' v l T o -  Tgl. 
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Fig. 15 

The dynamical behavior of the rarefaction wave structure in a cavitating liquid was calculated 
for the following parameters: ~ = 0.01 cm2/sec, c v = 0.718"107 cm2/(sec~'deg), Ig = 2470 g'cm/ 

(sec3-deg), k 0 = 10 -4 , R 0 = 50 pm [15]. 

Figure 7 shows the pressure distribution in the liquid at times t = 20 and 40 ~sec (a) 
and 440 ~sec (b). It is evident that the wave field splits up into two characteristic parts: 
a precursor forming a centered rarefaction wave and propagating with the "frozen" speed of 
sound of the unperturbed liquid, and the main disturbance in the form of a wave with an oscil- 
lating front and propagating with the equilibrium speed of sound of the two-phase bubbly 
medium. We note the analogy with the separation of shock waves in bubbly media into a pre- 
cursor and a wave packet observed by the author in [16]. 

2. Transition to the Fragmentation Sta~e. Methods of Measurement. As noted above, for 
sufficiently intense rarefaction waves bubble cavitation is characterized by unbounded growth 
of nuclei from the entire theoretically possible size spectrum. Because the tensile stress 
relaxation time in the cavitation zone is small compared with the typical time required for 
buildup of the zone to volume concentrations of several dozen percent, the idea of a two-phase 
model with instantaneous relaxation has been proposed [17]. In this model the medium in the 
region behind the front bf the rarefaction wave is characterized only by its inertial prop- 
erties. The restrictions on the volume concentration are obviously removed in this approach 
and the zone can build up until the formation of a foamy structure. 

Unfortunately our current understanding is incomplete of the essentially nonlinear pro- 
cesses of unbounded growth of bubbles in cavitation clusters, their hydrodynamic interactions 
in close-packed structures with volume concentrations of 0.5-0.75, and the transition 
through the foamy structure to the breakaway of sheets and the formation of the droplet phase. 
Therefore new experimental information and methods to determine the features of the process 
are of fundamental importance. We note that in solid-state mechanics two types of breakdown 
under pulse loading are usually considered: plastic and frangible breakdown. In the latter 
case the formation of discontinuities in the form of surfaces on which critical stresses 
arise is typical. Study of the flow structure of a cavitating liquid produced by an under- 
water explosion near the free surface shows that the breakdown of the liquid in intense dis- 
charge waves occurs by both mechanisms and cavitating sheets are observed [18] (Fig. 8). A 
cavitating liquid therefore displays a frangible property which is not chracteristic of an 
ideal liquid. The nature of this effect is still to be explained, as is the answer to the 
question of where in a large mass of cavitating liquid sheets are formed. The prerequisite 
to their formation is possibly built into the wave field from the very beginning. 

We discuss a number of methods which more or less determine the basic elements of the 
process. The experiments of [17] with an exploding wire show in the case of axial loading of 
a cylindrical sample of liquid that the flow splits up into two zones: cavitating external 
and internal zones in the form of a liquid ring bordering a cavity containing the explosion 
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products. As the process develops the outer cavitation layer should break up into fragments 
(the medium is no longer continuous) and therefore a detector measuring dynamical head near 
the free surface should show a smooth transition from one state to the other. Figure 9a, in 
the form of three-dimensional diagrams of the pressure as a function of time and the distance 
6 to the free surface, shows the "two-pulse" structure of the stopping pressure. It is 
evident that the pulse corresponding to the flow of the cavitating liquid decreases sharply 
with increasing distance from the free surface. It practically disappears after 150-200 vsec 
because of the formation of a foamy structure as an intermediate step in the breakdown process. 
The second pulse corresponds to the layer of continuous liquid which becomes unstable and 
breaks up much later. The experiment shows that in reversible cavitation breakdown does not 
occur and the two pressure "waves" join together after a certain time. 

The inversion can be detected more exactly by measuring the electric potential in the 
medium. It is well known that a potential difference occurs in a dispersed system when 
there is relative motion between the phases. The potential difference is in the direction 
of the relative velocity. The cause is the presence of an electric double layer on the 
boundary between the phases and flow-induced separation of ions adsorbed on the surfaces of 
bubbles or drops. The sign of the ions will depend on the particular two-phase structure. 
Therefore by measuring the instant when the potential changes sign, one can determine when 
inversion of the two-phase state has occurred. Measurements of this kind were carried out 
in [19] using a setup similar to [17]. They show that after approximately 500-600 ~sec the 
inversion process is completed (Fig. 9b, where I is the cavitating liquid, 2 is the gas- 
droplet system, and the diagram is qualitative). 

The opacity of the fully developed cavitation zone and the screening of its internal 
structure by a layer of bubbles on the wall of the shock tube makes the use of the standard 
high-speed optical motion pictures unsuitable. The use of x-ray pulses is much more promis- 
ing [20]. 

The later optically opaque stage of the cavitation process in intense rarefaction 
waves was studied using three x-ray devices in a two-diaphragm hydrodynamic shock tube con- 
sisting of three sections: a high-pressure chamber, an evacuated acceleration channel (with 
the driving piston and two separating diaphragms on the ends), and the working section made 
of duralumin and containing the liquid under study. The lower diaphragm was ruptured by an 
electromagnetic system with a needle and the velocity of the piston against the upper dia- 
phragm separating the channel from the liquid was measured with fiber-optic detectors. 
The entire system was synchronized: the three x-ray devices were started with different a 
priori time lags, thereby producing high-speed x-ray photographs. The average radiated 
energy was about 70 keV and the duration of a single burst was 80 nsec. A shock wave 
produced in the liquid sample was a result of impact of the piston. Its positive phase 
lasted several tens of microseconds and the amplitude varied between 20 and 30 MPa. Re- 
flection of the shock wave from the free surface of the liquid produced strong cavitation, 
as shown by the x-ray photographs in Fig. i0 for different times from zero to 1 msec (the 
interval between frames is 200 ~sec). We see that after 600 ~sec the cavitation bubbles 
reach close packing with prominent vapor-gas cells. 

Computer analysis of the images on the x-ray negatives was necessary in order to be 
able to freely analyze the dynamics of the process without interference by the detectors. 
The result is a computer-generated version of the experimental data which can easily be 
analyzed, giving a unique opportunity to reproduce the dynamics of the cavitation zone 
structure in an arbitrary cross section (the lower limit of resolution in the concentration 
was about 2%). Figure Ii shows a typical computer version of a stage of cavitation and the 
cross-sectional average local density distribution along a line parallel to the symmetry 
axis and separated from it by a distance of R/2. The volume concentration k of the vapor- 
gas phase along the cross section varied from zero (homogeneous liquid) up to values typical 
of a system with close packing of bubbles (k z 75%). 

The experiments show that before the process reaches the fragmentation stage, the zone 

of strong cavitation can be defined as the zone with close-packed bubbles where a chain of 
touching bubbles can fill the volume of the mixture by displacement by the bubble radius or 
by parallel transport. Assuming that the bubbles maintain their spherical shape and that the 
initial number of nuclei is of order 106 cm -3, it is not difficult to show that the size of 
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the liquid fractions in the spaces between the touching bubbles in such structures varies 
between 7 and 25 ~m, depending on the packing configuration. This estimate is for the 
central core, although starting from the packing configurations it should have several thin 
tails which can contribute micron-sized particles to the spectrum of the droplet structure 
of the nascent inversion two-phase medium during dispersion and breakdown. 

3. On a Physical Model of Breakdown. The basic features of the breakdown process of 
a finite volume of liquid with a free surface produced by explosive loading (called cavitation 
breakdown [4]) can be described as follows. The reflection of the strong shock wave from 
the free surface leads to the formation of a discharge wave and behind its front strong 
bubble cavitation develops on microinhomogeneities acting as nuclei; these are always present 
in real liquids. 

Unbounded growth of cavitation bubbles leads to the formation of the foamy structure in 
the bubbling liquid. The latter is finally transformed into the gas--droplet structure during 
inertial expansion, which, as noted above, starts because of tensile-stress relaxation. The 
duration of each phase of breakdown can be different in each case and depends strongly on the 
loading dynamics. However, the typical time scales of the process are determined from the 
experimental and numerical studies mentioned above: tensile-stress relaxation is of the 
order of microseconds, dense cavitation clusters develop over tens of microseconds, the foamy 
structure forms over hundreds of microseconds, and its breakup into liquid (possibly cavitat- 
ing) fragments occurs over roughly a millisecond. Experimental and numerical studies of the 
final stage of the process are discussed below. 

Since details of the transition from the foamy structure to the droplet structure are 
still unknown, we will assume that fragmentation occurs instantaneously when the cavitation 
zone structure reaches close packing. We then assume that the close packing of bubbles is 
instantaneously transformed into close-packed noncoagulating spherical elastic liquid drop- 
lets. The size spectrum of the droplets was estimated at the end of Sec. 2. This model 
can be called the sandy model since this structure of the medium is characterized only by 
elastic interactions between particles. 

The obvious next step is the experimental comparison of the details of explosive break- 
down of a continuous liquid and a sandy shell with all of the correct geometrical parameters 
of the charge-shell system. 

High-speed motion pictures of the dispersion of both types of cylindrical shells under 
axial loading showed basically the identical structure of the resulting two-phase motion. 
Figure 12 shows a series of frames of the dispersing liquid and sandy cloud for two relative 
thicknesses of the systems: R = (5--4)R 3 (a) and R = 10R3 (b). Note that the streamer 
structures of the gas-droplet and sandy flows occurring at the same time (and typical for 
thin shells) are identical. Note also the preservation of the cylindrical shape at large 
calibers. 

To study the fine structure of the flow during the formation of a sandy cloud a special 
device was developed to measure the dynamics of the particle distribution at an arbitrary 
local point in the flow. It is a disk with a flat rim about 2 cm in height and radius of 
about 15 cm mounted on a motor shaft and capable of rotating with a linear velocity up to 
150 m/sec. A strip was attached to the outer perimeter of the disk and pointing outward. 
The entire device was mounted inside a hermetically sealed housing with a small 2 • 2 cm 
window opposite to the strip and a ventilator. The trap was placed at a given distance from 
the charge-shell assembly and was brought to the required velocity in order to eliminate the 
possibility of repeated superposition of the flow. The required velocity was determined 
from the duration of the flow by analyzing evolution of the process in the neighborhood of 
the given point. Because the window in the trap was always open, it was not necessary to 
synchronize the startup of the trap with the process. Part of the flow entered the trap in 
the explosion and tiny particles were caught on the rotating strip. The time variation of 
the concentration of particles at the given point was thereby measured. 

Figure 13 shows two scans of the structure of the sandy flow at distances of 0.6 (a) 
and 1 m (b). It is interesting to note that the flow is characterized by stratification of 
particles according to size. At 0.6 m the smaller particles are in the tail of the flow, 
while at 1 m the trap picks up only the large particles. The sandy cloud is therefore 
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strongly stratified: the small particles occupy the central zone and the large particles are 
distributed at the periphery. 

This model, with its instantaneous transformation of the foamy structure into the droplet 
structure, was analyzed numerically [21]. A spherical charge of explosives with density P0 
and radius r I is surrounded by a two-phase shell of outer radius r 2 of liquid particles and 
air with a volume concentration of the dispersed phase of 74%, corresponding to close packing 
of spheres. Detonation of the charge was modeled as an instantaneous explosion at constant 
volume. The pressure of the detonation products was taken to be an average value and the 
density was P0- The spherically symmetric motion of the two-phase mixture can be described 
by the following equations written separately for each component: 

pl~+ r-2(r2~L~,)r = 0, 
I)2~+ r-2(~p2~2)r = 0, 

I--~.22 

-p~)], = _/, 

(p2u2), + r -2 (r2o~u2). + ~2p2~ =/, 

(9,El + 92E~)~ + r -2 [r z (plulE1 + 92uzE2) + r 2 (~lztlpL + ~2u2p2) ]~ = O. 

Here Oi = 0i~ (i = i, 2); am + a 2 = i; f = 0.75~2P~Cdlul -- u21 (u I -- u2)/d; 

subscripts 1 and 2 refer to the gas and dispersed phases, d is the particle diameter, Pi, 
9i ~ ~i ui, Pi, Ei, ei are the average and true densities, the volume concentration, the 
velocity, the pressure, and the total and internal energies of the i-th phase. The expres- 
sions for the drag coefficients were taken from [21]. The Tate equation of state was assumed 
for the dispersed phase. The system of equations was closed by the assumption of simultaneous 
deformation of the phases: when ~2 > 0.74 the particles are assumed to deform such that 
they are stacked at the corners of right tetrahedrons and the surface of contact between two 
particles is a plane, but otherwise the particles preserve their spherical shape. 

The large-particle method was used for the numerical calculations. In this method the 
velocity distributions of the phases are assumed to be far from equilibrium. Therefore for 
stability the right-hand sides of the momentum conservation equations were approximated by 
choosing one factor from the lower (in time) layer of the difference grid and another factor 
from the upper layer. The explosive was assumed to be hexogen with density P0 = 1.65 g/cm s 
and caioricity 1.32 kcal/g. The other initial parameters of the problem were rl = 0.3 cm, 
r 2 = 1.5 cm, e I = 5526 J/g, 9z = 1.65 g/cm s, ~2 = 0.74, pz ~ = 1 g/cm s, u 2 = 0, e 2 = 0. The 
medium external to the droplet shell was air with initial parameters Pl = 0.001 g/cm s, ul = 
0, e z = 250 J/g. 

The calculations were done for three species of liquid particles d = i, 6, and 60 ~m. 
Three stages of the process can be identified from the numerical results. The first stage is 
associated with the breakup of the discontinuity on the inner boundary of the two-phase 
region, which leads to a rarefaction wave in the detonation products and a shock wave in 
the gas and dispersed phase (dashed lines in Fig. 14a). The shock wave in the gas lags 
somewhat behind the shock wave in the liquid particles and its amplitude is much smaller 
(lines i, 1'-3, 3' correspond to times of 3, 6, and 9 Dsec in Fig. 14a). The shock wave 
compresses the dispersed phase and it acquires a velocity which is large compared to the gas 
velocity: the boundary of the detonation products does not keep up with the inner edge of 
the dispersed layer. After reaching the outer boundary a diverging shock wave is produced 
in the air while a rarefaction wave propagates through the particles. Together with divergent 
effects, the rarefaction wave leads to a rapid drop in tensile stress in the particles and 
their density drops below the close-packed value after 20 ~sec (the particles separate and 
the shell becomes transparent). 

In the second stage kinetic energy is transferred to the dispersed phase. This stage 
effectively ends after 60-70 ~sec, when the pressure in the detonation products drops to 
atmospheric pressure and the particles begin to decelerate (Fig. 14b shows the mass velocity 
distribution for t = 20 and I00 Bsec, lines i, I' and 2, 2'). In the third stage the rarefaction 
wave accumulates toward the center and there is a strong return flow of the gas (Fig. 14c, 
t = 350 Dsec), which brakes and then carries off small particles toward the center (Fig. 14d, 
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t = 500 ~sec), thus producing the size stratification observed experimentally. This effect 
also produces a sharp (by about a factor of 40) increase in the thickness of the two-phase 
layer as the inner and outer radii reach their asymptotic values. Wave processes in the gas 
phase have a strong effect on the dynamics of the inner boundary of the layer, which oscil- 
lates with a frequency characteristic of these processes. 

The sandy model of one of the stages of the breakdown of a liquid under explosive load- 
ing may find an interesting extension in the framework of the experimental studies of the 
flow structure of a dusty layer in a rarefaction wave carried out by Sturtevant at California 
Institute of Technology [22]. 

In the experiments of [22] a 60 cm layer of glass balls of diameter 125 pm was packed 
on the bottom of a cylindrical chamber filled with air at atmospheric pressure and separated 
from a high-pressure chamber (0.31MPa) by a diaphragm. After rupture of the diaphragm a 
rarefaction wave propagated in the air gap, reached the layer boundary, reflected from it, and 
was partially refracted inside the layer. The experiments show that the refracted wave in- 
duced a rapid expansion of gas into the pores between the particles. Horizontal sheet dis- 
continuites of the type seen in liquids (Fig. 15 of [22]) were observed, which then trans- 
formed into a system of cavities forming a honeycomb structure (compare Fig. i0). According 
to the experimental data of [22] the thickness of the separated sheets in the dusty layer 
was several times the particle diameter. In the upper part of the layer the particles ob- 
tained an average acceleration of about 275 g in the first 5 msec and reached velocities of 
about 15 m/sec. We note that the density of particles in the dusty layer was about 5-105 
cm -3 and corresponds to the density of cavitation nuclei in real liquids, while the layer 
itself models the state of a cavitating liquid when the bubble zone reaches the close- 
packed density. 

The analysis discussed here of certain essentially nonlinear effects determining the 
behavior of real liquids under explosive loads shows that, in spite of the complexity of 
the problem, it is possible to construct adequate mathematical models describing wave 
processes in cavitating and disintegrating liquids. The experimental methods discussed 
here may provide answers to a number of fundamental questions on the mechanics of liquid 
breakdown. 

Unsolved problems include the mechanism of "frangible" breakdown of the foamy structure 
and the foanr-droplet transition, the development of methods capable of resolving the entire 
possible spectrum of nuclei, the stability of combination structures of the type gas nucleus- 
solid particle, the metastable state of a liquid in the deep negative phase, and the kinetics 
of the formation of vapor centers on the front of an intense rarefaction wave. 

LITERATURE CITED 

i. D. H. Trevena, Cavitation and Tension in Liquids, A. Hilger, Bristol (1987). 
2. D. A. Wilson, J. W. Hoyt, and J. W. McKune, "Measurement of tensile strength of a liquid 

by explosion technique," Nature, 253, No. 5494 (1975). 
3. G. A. Carlson and K. W. Henry, "Technique for studying tension failure in application 

to glycerol," J. Appl. Phys., 42, No. 5 (1973). 
4. V. K. Kedrinskii, "Surface effects in underwater explosions (review)," Prikl. Mekh. Tekh. 

Fiz., No. 4 (1978). 
5. R. H. Cole, Underwater Explosions, Princeton University Press, Princeton, NJ (1948). 
6. V. K. Kedrinskii, "Negative pressure profile in cavitation zone at underwater explosion 

near the free surface," Acta Astronautica, ~, No. 7-8 (1976). 
7. A. S. Besov, V. K. Kedrinskii, and E. I. Pal'chikov, "Study of the initial stage of 

cavitation, using optical diffraction," Pis'ma Zh. Tekh. Fiz., i0, No. 4 (1984). 
8. F. G. Hammitt, A. Koller, O. Ahmed, et al., "Cavitation threshold and superheat in 

various fluids," Proc. Conf. on Cavitation, Edinburg, 1974, Mech. Eng. Publ., London 
(1976). 

9. V. K. Kedrinskii, "Peculiarities of bubble spectrum behavior in cavitation zone and 
its effect on wave field parameters," Ultrasonics Intern. 85, London, Gilford (1985). 

i0. V. K. Kedrinskii, "On the relaxation of tensile stresses in cavitating liquid," 13th 
Int. Congress on Acoustics, Beograd, 1989, Dragan Srnic Press, Sabac (1989). 

ii. M. G. Sirotyuk, "Experimental study of ultrasonic cavitation," Strong Ultrasound Fields 
[in Russian], Part 5, Nauka, Moscow (1968). 

376 



12. V. K. Kedrinskii, "On multiplication mechanism of cavitation nuclei," 12th Int. Congress 
on Acoustics, Toronto (1986). 

13. V. K. Kedrinskii, V. V. Kovalev, and S. I. Plaksin, "On a model of bubble cavitation in 
real liquids," Prikl. Mekh. Tekh. Fiz., No. 5 (!986). 

14, I. Hansson, V. Kedrinskii, and K. Morch, "On the dynamics of cavity clusters," J. 
Phys. D, 15, (1982). 

15. V. Kedrinskii and S. Plaksin, "Rarefaction wave structure in cavitating liquid," Problems 
in Nonlinear Acoustics: Trans. Symp. IUPAP-IUTAM on Nonlinear Acoustics, Novosibirsk 
(1987), Ch. i. 

16. V. K. Kedrinskii, "Propagation of disturbances in a liquid containing gas bubbles," 
Prikl. Mekh. Tekh. Fiz., No. 4 (1968). 

17. N. N. Chernobaev, "Modelling of shock-wave loading of liquid volumes," Adiabatic Waves 
in Liquid Vapor Systems, Proc. IUTAM Symp., Gottingen, 1989, Springer, Berlin (1989). 

18. V. K. Kedrinskii, Experimental research and hydrodynamical models of a 'sultan'," 
Arch. Mech., 26, No. 3 (1974). 

19. S. V. Stebnovskii, "On the mechanism of pulse breakdown of a liquid volume," Prikl. 
Mekh. Tekh. Fiz., No. 2 (1989). 

20. A. R. Berngardt, E. T. Bichenkov, V. K. Kedrinskii, and E. I. Pal'chikov, "Optic and 
x-ray investigation of water fracture in a rarefaction wave at a later stage," in: 
Optical Methods in Dynamics of Fluids and Solids, Proc. IUTAM Symp., Prague, 1984, 
Spinger, Berlin (1985). 

21. I. G. Gets and V. K. Kedrinskii, "Dynamics of the bubble breakdown of a finite volume 
of a two-phase mixture," Prikl. Mekh. Tekh. Fiz., No. 2, (1989). 

22. A. V. Anilkumar, "Experimental studies of high-speed dense dusty gases," Thesis, 
Pasadena (1989). 

377 


